Saturday, 12 January 2013

Nano-Ampere Meter

Nano-Ampere Meter
This circuit can measure currents down into the nano-ampere range. It is useful when building, testing and experimenting with low-power circuits, especially those operating off batteries.

The circuit is built around commonly available JFET input op-amp TL081 and a few precision resistors. It has a wide operating range from 0-10
nA to 0-1 A in steps of multiplicative decades. the range can be easily extended to 10 A and 100 A by including additional range resistors of 100 ohms and 10 ohms, respectively.

Fig. 1: Circuit of nano-ampere meter

The +\-5V supply (not shown in the circuit) may be obtained from standard 7805 and 7905 regulators to power the circuit. IC TL081 is wired as a high-gain non-inverting DC amplifier with a gain of Rf /R1+1=100. The current to be measured is passed through a fixed known resistor. The voltage drop across this resistor is applied to the amplifier and output as 100xImxR (where Im is the current to be measured). The range can be controlled by selecting R (1 kohms, 10 kohms and 100 kohms) appropriately.


Fig. 2: Author's prototype

The diode in parallel with the meter protects the circuit against high currents that may occur due to improper range selection. Further, the range resistors do not have any noticeable effect on the current to be measured. For instance, to produce a current of 10 nA from a 5V source, it is necessary to include a 500-mega-ohm resistor in the circuit. Since a 100k ohms is being used to sample this current, it is very small as compared to the large value 500M ohm.

Any meter can be used to calibrate the output, provided the gain of the DC amplifier is changed appropriately. That is, a meter with full-scale deflection of 150A would require a gain of 150 and vice-versa. Using a commonly available digital multimeter, adjust the calibrator (preset VR2) such that the resistance of the calibrator and 100
A meter (typically, which has a resistance of 700 ohms) in series is exactly 1 kilo-ohm. Now wire the entire circuit and adjust the set-zero trimpot to get zero deflection in any range of the multimeter. Now the nano-ampere meter is ready for use.

Assemble the circuit on a general-purpose PCB and enclose in a small cabinet. fix the ammeter on the front panel. Provide three terminals for the power supply (-5V, +5V and GND) on the rear panel and two terminals on the front panel for the current to be measured. 
 

Cellphone-Based Remote Controller for Water Pump


Cellphone-Based Remote Controller for Water Pump
Inconvenience in switching on a water pump installed in a remote farm is a common problem faced by farmers. Many circuits have been developed to solve this problem. Most of them are expensive and microcontroller-based. Here we present a cellphone-based remote controller for water pump. By calling the cellphone attached to the controller, the water pump can be directly activated.

Circuit and working
Fig. 1 shows the block diagram of cellphone-based remote controller for water pump. Fig. 2 shows the circuit. The circuit is built around DTMF decoder IC MT8870 (IC1), timer NE555 (IC2) wired as monostable multivibrator and a few discrete components. The main component of the circuit is IC MT8870. This DTMF decoder has band-split filter and digital decoder functions. It offers the advantages of small size, low power consumption and high performance.


Fig. 1: Block diagram of cellphone-based remote controller for water pump


Fig. 2: Circuit of cellphone-based remote controller for water pump
Once monostable timer IC2 is triggered, its output goes high for the preset time period. The time period depends on the values of resistor R7 and capacitor C4. It can be adjusted between 8 and 50 minutes using pot-meter VR1. The high output at pin 3 of IC2 energises relay RL1 to switch on the water pump.

The triggering pulse for IC2 is generated by DTMF decoder IC1 and the arrangement of diodes D1 through D5. Std pin of IC1 provides a high pulse when a valid tone-pair is received. Transistor T1 conducts only when outputs Q0 through Q2 and Std are high simultaneously. This can be achieved by sending digit ‘7’ through DTMF.


The water pump controller is connected to a dedicated cellphone through connector J1 with auto-answering mode enabled. The DTMF signal sent from the user end is decoded by the DTMF decoder and the corresponding binary-coded decimal (BCD) value appears on outputs Q0 through Q3. In this circuit only three of them are used.

Working of the circuit is simple. To switch ‘on’ the water pump, call the cellphone connected to the controller circuit and press ‘7’ once the ring stops. LED1 will glow to indicate that the water pump is switched on. The water pump turns off automatically after the preset time. LED1 turns off simultaneously.

Construction and testing
An actual-size, single-side PCB for cell-phone-based remote controller is shown in Fig. 3 and its component layout in Fig. 4. Suitable connector is provided on the PCB to connect the cellphone. Assemble the circuit on a PCB to minimise time and assembly errors. Carefully assemble the components and double-check for any overlooked error. Use suitable IC socket for MT887 and NE555 ICs.


Fig. 3: An actual-size, single-side PCB for cellphone-based remote controller


Fig. 4: Component layout for the PCB
Use relay RL1 with contact current rating capable of carrying the water pump’s current.

To test the circuit for proper functioning, press switch S1 and verify 5V at TP1 with respect to TP0. Connect the cellphone to the controller using connector J1. Call this cellphone and press ‘7’ once the ring stops. At the same time, verify high-to-low triggering pulse at TP2. TP3 now should be high for the preset time period.

Saturday, 15 December 2012

Security Alarm

Security Alarm 
Thwart any attempt of burglary in your house using this alarm circuit. When someone opens the door of your room, it sounds an alarm intermittently and flashes light as well. The circuit can also be used as an audio/visual alarm in case of fire or other emergency by momentarily pressing switch S3.

The circuit (refer Fig.1) is built around transformer X1, a standard bar magnet, reed switch S2, timer IC NE555 (IC1), opto-coupler IC MOC3020 (IC2), TRIAC BT136 and a few discrete components. Timer IC1 is wired as an astable multi-vibrator whose reset pin 4 is controlled by the reed switch. The reed switch fitted in the door frame acts as the sensor. A magnet is fixed on the door panel close to the reed switch.



Fig.1: Security alarm circuit
The reed switch consists of a pair of contacts on ferrous metal sealed in a glass envelope. The contacts may be normally-open (which close when a magnetic field is present) or normally closed type (which open when a magnetic field is applied). A normally open- type reed switch is used here.

When the door is closed, reed switch S2 is in open state. When the door is opened, the bar magnet moves away from reed switch S2. As a result, reset pin 4 of IC NE555 goes high. The high output at pin 3 of IC1 enables IC2. Pin 4 of IC2 is connected to the gate of TRIAC1.

When the door is opened, bulb B1 flashes and the bell sounds (provided switch S4 is closed) indicating that the door has been opened. Flashing of the bulb and the alarm continue until the door is closed.

Assemble the circuit on a general purpose PCB and enclose in a suitable cabinet. Connect the call bell at the back side and the bulb at the front side of the cabinet. Install the unit on the door of the room as shown in Fig.2.


Fig.2: Reed switch fitting in door
The circuit is powered by mains supply.
 

1-30 Minute Timer

1-30 Minute Timer 
 Using this circuit you can switch on an appliance for a desired time. The circuit provides selectable time settings of 1, 2, 5, 10, 15 and 30 minutes, and can be used for domestic as well as industrial applications.

The circuit can be divided into two sections—power supply and timer. The power supply is built around transformer X1, bridge rectifier BR1, capacitor C1 and 12V voltage regulator IC LM7812 (IC1). The 230V AC mains supply is stepped down by transformer X1 to deliver the secondary output of 12V, 250 mA. The transformer output is rectified by full-wave bridge rectifier BR1, filtered by capacitor C1 and regulated by IC1. The circuit can also be powered by a 12V battery. The power source can be selected by using switch S2.

The timer section is built around IC NE555 (IC2) along with resistors R1 through R6, capacitor C2, transistor BC548 (T1) and a 12V relay. IC2 is configured in monostable mode to provide the different time settings ranging from 1 to 30 minutes. The desired time is selected by rotary switch S1 as shown in the table. Pressing switch S3 starts the operation. Once triggered, the timer returns to its original state after the preset time.
Working of the circuit is simple. Capacitor C2 charges through a resistor or combination of resistors R1 through R6. When start switch S3 is pressed, the monostable triggers and its output pin 3 goes high for the time selected by the position of rotary switch S1. The output time (T) of the monostable in seconds is T =1.1RC.

Assemble the circuit on a general-purpose PCB and enclose in a suitable case. Fix the unit near the appliance that has to be controlled. Use a 12V relay (RL1) with contact current rating suited for the the appliance.

DC Motor Control Using PWM

DC Motor Control Using PWM 
Small DC motors are efficiently controlled using pulse-width modulation (PWM) method. The circuit described here is built around an LM324 low-power quad-operational amplifier. Of the four op-amps (operational amplifiers) available in this IC, two are used for triangular wave generator and one for comparator.

Op-amp N2 generates a 1.6kHz square wave, while op-amp N1 is configured as an integrator. The square wave output of N2 at its pin 14 is fed to the inverting input (pin 2) of N1 through resistor R1. As N1 is configured as an integrator, it outputs a triangular wave of the same frequency as the square wave. The triangular wave is fed to pin 5 of op-amp N3, which is configured as a comparator.

The reference voltage at pin 6 of the comparator is fixed through the potential divider arrangement formed by potmeter VR1 and resistors R4 and R5. It can be set from –6V (lowermost position of VR1) to +6V (uppermost position of VR1).

The triangular wave applied at pin 5 of N3 is compared with the reference voltage at its pin 6. The output at pin 7 is about +12V when the voltage at pin 5 is greater than the voltage at pin 6. Similarly, the output at pin 7 is about -12V when the voltage at pin 5 is lower than the voltage at pin 6.

The output from comparator N3 is the gate voltage for n-channel MOSFET (T1). T1 switches on when the gate voltage is positive and switches off when the gate voltage is negative. Setting of the reference voltage therefore controls the pulse-width of the motor.

When T1 is switched on for a longer period, the pulse width will be wider, which means more average DC component and faster speed of the motor. Speed will be low when the pulse width is small. Thus potmeter VR1 controls the speed of the motor.

Assemble the circuit on a general-purpose PCB and enclose in a suitable cabinet. The circuit requires ±12V power supply for its working. It can also be modified to control the speed of a 6V or 24V DC motor. 

Automatic Fan Controller For Air-conditioners

Automatic Fan Controller For Air-conditioners
Many central air-conditioning systems (ACs) have the option for cooling and heating both. These have a fan for blowing hot or cold air drawn from a central unit, often with no automatic speed control for the fan. The speed of the AC fan has to be manually controlled to maintain a comfortable temperature throughout the room.
Manually adjusting the AC temperature is not very convenient. So we present here an automatic control system for the AC fan which could also help control the room temperature to some extent. It allows the air-conditioning system to automatically blow warm air in winters and cool air in summers without requiring manual intervention.

Circuit description
Fig. 1 shows the circuit of the automatic fan controller for the AC. It comprises regulator IC 7805 (IC1), bar-graph driver IC LM3914 (IC2), comparator IC LM339 (IC3), temperature sensor IC LM335 (IC4) and some discrete components. Pin configurations of 7805, BC337 and LM335 are shown in Fig. 2.

Fig. 1: Circuit of the automatic fan controller for ACs

Fig. 2: Pin configurations of 7805, BC337 and LM335
Power for the circuit is derived from mains supply. The 230V, 50Hz AC mains is stepped down by transformer X1 to deliver a secondary output of 12V, 500 mA. The transformer output is rectified by a full-wave rectifier comprising diodes D1 through D4, filtered by capacitor C6 and regulated by IC 7805. Capacitor C7 bypasses ripples in the regulated supply.

IC LM3914 is configured for bar-graph mode by connecting its pin 9 to 5V supply. It functions both as the temperature and set-point indicator, depending on whether switch S1 is in RUN or SET position, respectively. A highly stable internal reference voltage is generated at pin 7 using resistor combination R1-R2 and presets VR1 and VR2. This voltage is directly fed to the upper end of the internal voltage divider chain at pin 6. Pin 4, the lower end of the internal voltage divider chain, is connected to the wiper of preset VR1. The voltage difference between pins 4 and 6 determines the range of temperature control.
Potentiometer VR3 connected between pins 4 and 6 of IC2 provides temperature setting depending on the position of switch S1. The comparator inside IC2 compares the voltage at pin 5 with the voltage difference across pins 4 and 6, and incrementally turns on LED1 through LED10 at every tenth of the temperature range. Current driven through the LEDs is regulated and programmable, thus eliminating the need for resistors.
The temperature control function is performed by comparator IC LM339. This IC uses only three of the four independent precision comparators operating off a single power supply. Comparator A1 is wired as a non-inverting comparator with hysteresis. R6 is used as a pull-up resistor for comparator A1, while resistors R7 and R8 provide a hysteresis voltage. The inverting input of A1 at pin 4 is connected to the wiper of potentiometer VR3.
The output of comparator A1 goes high when the voltage at its non-inverting input is greater than the voltage at the inverting input. Comparators A2 and A3 act as inverting and non-inverting buffers, respectively. Resistors R4 and R5 form a voltage divider which provides reference voltage at pins 7 and 8 for comparators A2 and A3, respectively.
Mode switch S2 is used to select the output of A2 (pin 1) or A3 (pin 14). Pole of switch S2 is connected to the base of transistor T1. The base of transistor T1 is driven into saturation via resistor R9, which is connected to unregulated 12V supply. Relay RL1 is connected to the collector of T1. Therefore T1 acts as a switch for relay RL1. Diode D5 across the coil of relay acts as a free-wheeling diode. The motor of the AC fan is connected to the circuit through relay contacts. Thus relay switches the fan on or off.
Temperature sensor IC LM335 acts as a zener diode. Its breakdown voltage is directly proportional to the absolute temperature at 10 mV/ºK. Resistor R3 limits the current through IC4. Capacitor C4 bypasses any external noise.


Fig. 3: An actual-size, single-side PCB for the automatic fan ACs



Fig. 4: Component layout for the PCB


Construction

An actual-size, single-side PCB for the automatic fan controller for ACs is shown in Fig. 3 and its component layout in Fig. 4. Assembling the circuit on a PCB minimises time and assembly errors.
Use bases for ICs LM3914 and IC LM339. Enclose the assembled circuit in a suitable cabinet. On the PCB, provide suitable connectors for switches S1 and S2 and potentiometer VR3 to extend these out from the cabinet through cable.
The sensor is brought out from the cabinet with a two-core cable. LED1 through LED10, switches S1 and S2, and potentiometer VR3 are mounted on the front panel of the cabinet. LED1 through LED10 are marked with calibrated temperature values.
Calibration. Calibrate the automatic temperature controller before putting it into the AC’s circuit. Calibration is done for temperature control between 20ºC and 29ºC and temperature indication by LED1 through LED10.

First, with the help of a thermometer and digital voltmeter, set the temperature range to be indicated and controlled. Make sure that temperature sensor IC4 is free-standing in air, away from any source of heat, such as soldering iron or a heat-emitting lamp in the room.
Apply AC power to the circuit after finishing the construction. Do not connect motor to the unit yet. Using the thermometer, take the room temperature reading. Adjust preset VR2 such that the LEDs indicate a corresponding temperature. For instance, if the temperature is 24ºC, LED1 through LED5 should glow, while LED6 through LED10 remain off.
Next, connect the digital voltmeter across potentiometer VR3 and adjust preset VR1 such that the voltage reading is exactly 0.111V. This sets the temperature range by potentiometer VR3 between 20ºC and 29ºC.
 

Solid State Voltage Stabiliser

Solid State Voltage Stabiliser
In India, we have a large power distribution system with heavy distribution losses and variations in industrial/ domestic load. This results in voltage variations that may damage electrical/ electronic appliances like light, fan, television, mixer-grinder, air-conditioner, heater, water pump, toaster, etc.

Here, we describe how to make a solid-state voltage stabiliser that does not use electromechanical relays and is suitable for most purposes. Key features of the solid-state voltage stabiliser are:

1. Wide range of voltage variation from 120 V to 280 V
2. Only two settings are required low voltage and high voltage
3. Stabilised output of 220V
4. Compact size
5. Silent operation and no relay chattering sound
6. Bar graph LED voltage indicator
7. Low/high voltage indicator and cut-off protection

The block diagram of a solid-state voltage stabiliser is shown in Fig.1
.




Fig.1:Block diagram of solid-state voltage stabiliser

The circuit diagram comprises following four sections:

1. Analogue voltage to digital step changer
2. Isolated solid-state power relay
3. Control power supply unit
4. Mains transformer


Fig.2:Circuit diagram of voltage stabiliser

Analogue voltage to digital step changer. The circuit diagram of a solidstate voltage stabiliser is shown in Fig.2. The heart of the stabiliser is IC1 ( LM3914) bar display driver. It is used as LED-type bar graph voltmeter with lower voltage and upper voltage settings through presets VR1 and VR2. IC1 senses mains voltage. The difference between the lower voltage and upper voltage is divided into 10 steps. every LED indicates one step or one voltage level and is lit depending on the level of voltage received.

All the 10 outputs of IC1 that are used to lit the LEDs are also fed as inputs to dual
decoder/demultiplexer CD4556. CD4556 is used for converting analogue voltage to digital steps to ensure that, at a given time, only one tapping of mains transformer gets input supply voltage from mains. In all conditions only one step can be active as per analogue input voltage.

Assume the first condition when the mains voltage is less than the lower set value. All the output pins (1, 18, 17, 16, 15, 14, 13, 12, 11, 10) of IC1 will be high. IC3(A) will be disabled and no step will be selected (means low volt 16, 15, 14, 13, 12, 11, 10) of IC1 will be high. IC3(A) will be disabled and no step will be selected (means low voltage cut-off).

As the mains voltage increases to more than the lower set value, LED1 of the bar graph voltmeter glows as pin1 of IC1 is low and all other outputs pins are high. In this condition IC2(A) is enabled because input E (pin 1) is low. As inputs A0 and A1 of IC2(A) are high, out put Q3 goes low. This is step 1 of step charger.

When voltage increases, input A0 of IC2(A) goes low and its output Q2 also goes low. This is Step 2 of step changer.

Both these outputs are combined with 1N4148 diodes and given to cathode pin of internal LED of IC7 (MOC3011). As internal LED of IC7 glows, TRIAC1 conducts and provides AC mains to tapping ‘A’ of mains transformer X2.


When voltage increases further, both inputs A0 and A1 of IC2(A) go low, while both of its outputs go high , and TRIAC1 goes off. Input A1 and output Q2 of IC2(A) generate enable input E for IC2(B) with the help of set and reset input pins (S and R) of flip-flop IC5(A) (CD4013). Pin 1 of IC5(A) provides low signal to enable input E of IC2(B) and output Q3 of IC2(B) goes low. This is Step 3 of step changer. Similarly, other conditions work in the same manner (see Table).



The number of tappings for transformer X2 and the number of solid-stat relays to be used depend on the voltage range to be covered. If the minimum voltage can drop to 100 volts and the maximum could rise to 300 volts, we need to cover 200 volts deviation. This can be managed either through ten tappings with 20V difference or just five tappings with 40V difference between each.

Isolated solid state power relay. Isolated solid-state power relay comprises an opto-isolatortriac driver MOC3011, bridge rectifier (5A) and triac BT136. The opto-isolator triac driver MOC3011 is used for controlling the steps and connecting AC mains power supply to correct tapping of mains transformer X2 via solid-state relay. The capacity of solid-state relay depends on both the components traic and bridge rectifier. Here triac BT136 and 5A bridge rectifier are used for 1kW load. Triac BT139 with 10A bridge rectifier can be used for a solid state relay of more than 1 kVA and less than 3 kVA. You can use up to 3 kVA solid-state voltage stabiliser with 3 kVA transformer.

Control power supply.
Circuit diagram of control supply circuit is shown in Fig. 3. The 230V, 50Hz AC mains is stepped down by transformer X1 to deliver a secondary output of 24V, 500 mA. The transformer output is rectified by full-wave rectifier BR6, filtered by capacitor C9 and regulated by IC 7812 (IC12), which provides a 12V DC output. C10 and C11 provide further filtering. LED1 acts as the power indicator. Resistor R23 acts as a current limiter.

When capacitors used in the output are more than 10 μF, it is necessary to protect the regulator IC using diode (in this case, D11), in case their input is short to ground. Unregulated DC supply
voltage is used for input sensing by IC1 for controlling the steps of mains transformer through solid-state relays.



Fig.3: Power Supply

Mains transformer. The mains transformer used here is an auto-transformer with tappings of 120V, 152V, 184V, 216V, 248V and 281V, respectively (as shown in Fig. 2). All the tappings are connected with the voltage control solid-state relays to provide respective voltages. The tap at 216 volts is connected directly to the output.

Construction


An actual-size, single-side PCB for the solid-state voltage stabiliser is shown in  and its component layout in . The total circuit of solid-state voltage stabiliser can be assembled on a PCB. All the BT136 triacs need to be fixed on suitable heat-sinks with mica and insulated nut-bolts to isolate them. To begin with, the setting of solid-state voltage stabiliser is done without connecting mains transformer as described below.

1. Use a variable voltage transformer having 0 to 300 volts range and a digital voltmeter (3½-digit) for measurement of mains power supply.

2. Connect this solid-state voltage stabiliser with variable transformer starting from zero volts setting. Increase voltage slowly from 0 to 120 volts

3. Set variable voltage transformer output of 120 volts with the help of digital voltmeter

4. Set low voltage setting preset VR2 of IC-LM3914 so that only LED1 glows

5. Now set the transformer at 281 volts with the help of digital voltmeter

6. Set high voltage setting preset VR1 of IC1 so that all LEDs from LED1 through LED10 can glow

7. Set the transformer at 184 volts and check the LEDs

8. Set the transformer at 248 volts and check the LEDs
9. Move variable transformer from 120 to upside and check solid-state relay output one by one with the help of a test lamp of 220V, 40W. Also see table of CD4556.
10. Connect mains transformer tappings to solid-state relays with great care at proper tappings.

11. Now connect digital voltmeter to output socket and check the voltage with variable transformer from 120V ~ 281. the output should remain 220V

12. Connect test lamp as a load and check voltage variation. Now the solid-state voltage stabiliser is ready for use with a load of 1KVA.


note:-
Male and female pin type power connectors may be used to connect mains transformer tapping with solid-state relays on PCB. Bar graph LED voltmeter connection also  provides male and female pin connection from PCB to front panel of the stabiliser.